Topic Model Stability for Hierarchical Summarization
نویسندگان
چکیده
We envisioned responsive generic hierarchical text summarization with summaries organized by topic and paragraph based on hierarchical structure topic models. But we had to be sure that topic models were stable for the sampled corpora. To that end we developed a methodology for aligning multiple hierarchical structure topic models run over the same corpus under similar conditions, calculating a representative centroid model, and reporting stability of the centroid model. We ran stability experiments for standard corpora and a development corpus of Global Warming articles. We found flat and hierarchical structures of two levels plus the root offer stable centroid models, but hierarchical structures of three levels plus the root didn’t seem stable enough for use in hierarchical summarization.
منابع مشابه
A Hybrid Hierarchical Model for Multi-Document Summarization
Scoring sentences in documents given abstract summaries created by humans is important in extractive multi-document summarization. In this paper, we formulate extractive summarization as a two step learning problem building a generative model for pattern discovery and a regression model for inference. We calculate scores for sentences in document clusters based on their latent characteristics u...
متن کاملThe CIST Summarization System at TAC 2011
In this report, we present our extractive summarization system on both summarization and multiling tracks of TAC 2011. We introduce an extractive multi-document summarization method based on hierarchical topic model of hierarchical Latent Dirichlet Allocation (hLDA) and sentence compression. hLDA is a representative generative probabilistic model, which not only can mine latent topics from a la...
متن کاملBringing Summarization to End Users: Semantic Assistants for Integrating NLP Web Services and Desktop Clients
We present PathSum, a high-performing hierarchical-topic based singleand multi-document automatic text summarization framework. This approach leverages Bayesian nonparametric methods to model sentences as paths through a tree and create a hierarchy of topics from the input in an unsupervised setting. We describe the generative model used to learn a topic tree based on hierarchical latent Dirich...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملEvolutionary Hierarchical Dirichlet Process for Timeline Summarization
Timeline summarization aims at generating concise summaries and giving readers a faster and better access to understand the evolution of news. It is a new challenge which combines salience ranking problem with novelty detection. Previous researches in this field seldom explore the evolutionary pattern of topics such as birth, splitting, merging, developing and death. In this paper, we develop a...
متن کامل